If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-38x-140=0
a = 2; b = -38; c = -140;
Δ = b2-4ac
Δ = -382-4·2·(-140)
Δ = 2564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2564}=\sqrt{4*641}=\sqrt{4}*\sqrt{641}=2\sqrt{641}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-2\sqrt{641}}{2*2}=\frac{38-2\sqrt{641}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+2\sqrt{641}}{2*2}=\frac{38+2\sqrt{641}}{4} $
| 12=-r=-11 | | 4-10x=5x+2(3x-5) | | 3(2x=8)=2(x-7) | | 14y-24=180 | | 3*50+4x=194 | | -9n-9=-4n+36 | | 7c-5=3 | | -4f-(-8)=-4f-(-8) | | 53/7y=-106 | | 3|x-4|+2=32 | | -32=3x-6x+4 | | 6x=4x+35x+4 | | 5v-10=5/2 | | -9-3z=-(z+5)= | | 7(x-8)=-56 | | 4x-8-3x=4 | | 2n-9n=-63+12 | | 1/4=-5/8y | | 7x^2-5x+10=0 | | 4^7x+7=7x+1−57 | | 0=-0.6(x)+76 | | 17x^2-68x+32=0 | | 14x+5(6-2x+3))=0 | | x³+x²-2=78 | | -(3+2x)=-6+x | | -3(2x-3)=6x+9) | | 47x+7=7x+1−57 | | 5x-3x+3x-x=20 | | m2+2m+2=0 | | 4/7x+7=7x+1−57 | | 11(x-5)=-33 | | 3.8n-13=14n+5 |